Three useful properties of the determinant in index notation

Zach Hinkle

January 21, 2023

1 Property I

The determinant of a 3×3 matrix **A**, det(**A**), is given in index notation as

$$\det(\mathbf{A}) = \varepsilon_{ijk} A_{1i} A_{2j} A_{3k}.$$
 (1)

Because $det(\mathbf{A}^T) = det(\mathbf{A})$, we can immediately see that

$$\det(\mathbf{A}) = \det(\mathbf{A}^T) = \varepsilon_{ijk} A_{i1} A_{j2} A_{k3}$$
(2)

and therefore

$$\varepsilon_{ijk}A_{1i}A_{2j}A_{3k} = \varepsilon_{ijk}A_{i1}A_{j2}A_{k3}.$$
(3)

2 Property II

The determinant can be recast to contain two Levi-Civita symbols

$$\det(\mathbf{A}) = \frac{1}{6} \varepsilon_{lmn} \varepsilon_{ijk} A_{li} A_{mj} A_{nk} \tag{4}$$

which can be see as follows. We begin by examining how Eq. (1) changes if we swap a pair of the fixed indices. For example, if we exchange the indices 1 for 2 and vice versa we arrive at

$$\varepsilon_{ijk} A_{2i} A_{1j} A_{3k}. \tag{5}$$

We can relate this expression back to Eq. (1) by first rearranging,

$$\varepsilon_{ijk}A_{2i}A_{1j}A_{3k} = \varepsilon_{ijk}A_{1j}A_{2i}A_{3k} \tag{6}$$

then swapping i with j and using the fact that $\varepsilon_{jik} = -\varepsilon_{ijk}$

$$\varepsilon_{ijk}A_{1j}A_{2i}A_{3k} = \varepsilon_{jik}A_{1i}A_{2j}A_{3k} = -\varepsilon_{ijk}A_{1i}A_{2j}A_{3k} \tag{7}$$

which thus shows that

$$\varepsilon_{ijk}A_{2i}A_{1j}A_{3k} = -\varepsilon_{ijk}A_{1i}A_{2j}A_{3k}.$$
(8)

We can use the same trick to see what happens if we make a cyclic permutation of the fixed indices, i.e. $1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1$, then we have

$$\varepsilon_{ijk}A_{2i}A_{3j}A_{1k},\tag{9}$$

and now we rearrange, make the same cyclic permutation on the free indices $i \to j; j \to k; k \to i$, and utilize the fact that $\varepsilon_{ijk} = \varepsilon_{jki}$ to arrive at the result

$$\varepsilon_{ijk}A_{2i}A_{3j}A_{1k} = \varepsilon_{ijk}A_{1k}A_{2i}A_{3j} = \varepsilon_{jki}A_{1i}A_{2j}A_{3k} = \varepsilon_{ijk}A_{1i}A_{2j}A_{3k}.$$
(10)

From this we can make the following statement,

$$\varepsilon_{ijk}A_{li}A_{mj}A_{nk} = \begin{cases} \det(\mathbf{A}) & \text{for } \{l, m, n\} = \{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\} \\ -\det(\mathbf{A}) & \text{for } \{l, m, n\} = \{1, 3, 2\}, \{2, 1, 3\}, \{3, 2, 1\} \\ \text{something else} & \text{for } \{l, m, n\} = \text{all else.} \end{cases}$$
(11)

The existence of the determinant is enough to guarantee that the final line is non-singular. We can thus use Eq. (11) to make the following evaluation:

$$\varepsilon_{lmn}\varepsilon_{ijk}A_{li}A_{mj}A_{nk} = 6\det(\mathbf{A}) \tag{12}$$

or equivalently,

$$\det(\mathbf{A}) = \frac{1}{6} \varepsilon_{lmn} \varepsilon_{ijk} A_{li} A_{mj} A_{nk}$$
(13)

as was desired.

3 Property III

We can use (11) to extract another useful equation. Since the final line will result in a number of no meaningful value, rather than placing a second Levi-Civita symbol on the left-hand side of the equation as we did before, we may place it also on the right hand side to dispense with these nonsense numbers and arrive at

$$\varepsilon_{ijk}A_{li}A_{mj}A_{nk} = \varepsilon_{lmn}\det(\mathbf{A}). \tag{14}$$

This result is useful in that it effectively sums over the dummy indicies $\{i, j, k\}$ leaving only the free indices remaining.